Thomas Sangild Sørensen, MSc, PhD

Associate Professor
Department of Computer Science and Institute of Clinical Medicine
University of Aarhus, Denmark
Intra-cardiac surgery on infants and small children
Complex individual morphology
Surgical outcome will influence an entire life-time
Surgical simulation in congenital heart disease

- Preoperative planning
 - Virtual cardiotomy is now clinically feasible
- Training and education
 - Initial work...
Overview

Virtual cardiotomy

3D MRI

Training and education
2 months old boy
- Double outlet right ventricle
- VSD / septum deviates to the right
- Resembling Taussig-Bing heart
- Intramural course of coronary arteries

Biventricular repair possible? Switch or intracardiac repair?
Virtual cardiotomy
Univentricular heart
- Dextrocardia, hypoplastic right ventricle, discordant V-A connections
- TCPC
- Restrictive VSD apparent from 3D MRI
 - How do we access the defect?
Setup

- State of the art pc with high-end graphics card
 - €2500
- Two Phantom Omnis for force feedback
 - 2 x €2000

Force feedback for faster interaction
Technical contributions

- GPU used for computing the biomechanical model
 - i.e. tissue deformation
 - >50 acceleration over the CPU

- GPU used for force feedback computation
 - i.e. one can “feel” the model

- GPU used for sophisticated visualization
 - i.e. the visualization resolution exceeds the physical simulation resolution
Isotropic 3D MRI

- Transversal view
- Coronal view
- Sagittal view
The reconstruction process
In the previous slides we segmented only the blood pool.

For our virtual cardiotomy simulator we need to segment the myocardium also.
 - Use green paint to mark the myocardium.
Segmented 3D MRI from 41 patients
- Age 0-10 (median 1.5 years)
- Median heart rate 96 bpm
- Median weight 11.5 kg

Average segmentation time: 58.2 minutes
- ranging from 40-85 minutes
Example: VSD closure
Part II – training and education

- Preoperative planning
 - patient-specific virtual models

- Surgical training
 - generalized virtual models
An example

- 3D MRI of a volunteer
 - (Several) VSDs added manually in post-processing
- How can we best access the VSD?
 - Trans-ventricular or trans-atrial incision?
“Configurable” septal defects
Yet another movie
Summary

- **Available now / near future**
 - Isotropic 3D MRI
 - Virtual cardiotomy in clinically acceptable reconstruction times.

- **Short term research goals (pending funding)**
 - Improved suturing and handling of patches
 - Surgical anastomoses (BT-shunt, Norwood, Fontan)

- **Longer term research goals**
 - Full support for training and educational scenarios
 - Electrophysiology
Limitations

- Valves missing!
 - Not visible in the underlying MRI data
 - Consider integrating generic models
- End systole imaging
 - ... of a blood filled heart
- Shunts and high heart rates can degrade the MRI quality
 - Coils can also cause signal void
Acknowledgments

- Funding from the
 - Danish Research Council's Programme Committee on IT-Research
 - The Danish Heart Foundation

- The project group
 - Denmark, Germany, United Kingdom
 - Thomas Sangild Sørensen (MSc, PhD), Jesper Mosegaard (MSc, PhD), Allan Rasmusson (MSc), Bo Carstensen (MSc), Søren V. Therkildsen (MSc), Dagur Ballisager, Ole K. Hansen (MD), Vibeke Hjortdal (MD), Erik M. Pedersen (MD), K. Sørensen (MD), Gerald F. Greil (MD), Lutger Sieverding (MD), Philipp Beerbaum (MD), Reza Razavi (MD), Conal Austin (MD).
http://www.daimi.au.dk/~sangild
- Movies and key papers available